Numerical solution of forward and backward problem for 2-D heat conduction equation
نویسندگان
چکیده
منابع مشابه
A Numerical Method for Backward Inverse Heat Conduction Problem With two Unknown Functions
This paper considers a linear one dimensional inverse heat conduction problem with non constant thermal diffusivity and two unknown terms in a heated bar with unit length. By using the WKB method, the heat flux at the end of boundary and initial temperature will be approximated, numerically. By choosing a suitable parameter in WKB method the ill-posedness of solution will be improved. Finally, ...
متن کاملa numerical solution for an inverse heat conduction problem
in this paper, we demonstrate the existence and uniqueness a semianalytical solution of an inverse heat conduction problem (ihcp) in the form: ut = uxx in the domain d = {(x, t)| 0 < x < 1, 0 < t t}, u(x, t) = f(x), u(0, t) = g(t), and ux(0, t) = p(t), for any 0 t t. some numerical experiments are given in the final section.
متن کاملTwo numerical methods for solving a backward heat conduction problem
We introduce a central difference method and a quasi-reversibility method for solving a backward heat conduction problem (BHCP) numerically. For these two numerical methods, we give the stability analysis. Meanwhile, we investigate the roles of regularization parameters in these two methods. Numerical results show that our algorithm is effective. 2005 Elsevier Inc. All rights reserved.
متن کاملParallel Numerical Solution of 2-D Heat Equation
In this paper, we will discuss the numerical solution of the two dimensional Heat Equation. An approximation to the solution function is calculated at discrete spatial mesh points, proceeding in discrete time steps. The starting values are given by an initial value condition. We will first explain how to transform the differential equation into a finite difference equation, respectively a set o...
متن کاملNumerical Solution of a Nonlinear Inverse Heat Conduction Problem
The inverse heat conduction problem also frequently referred as the sideways heat equation, in short SHE, is considered as a mathematical model for a real application, where it is desirable for someone to determine the temperature on the surface of a body. Since the surface itself is inaccessible for measurements, one is restricted to use temperature data from the interior measurements. From a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2002
ISSN: 0377-0427
DOI: 10.1016/s0377-0427(01)00595-7